
CPS311 Lecture: Other Architectures

Last revised June 14, 2021
Objectives:

1. To introduce ISA's in common use today
2. To introduce the difference between RISC and CISC
3. discuss ISA support for various data types.
4. To discuss various register set options.
5. To discuss various instruction formats (3, 2, 1, load-store, and stack(
6. To discuss condition codes.
7. To discuss various addressing mode

 Materials: 

1. Projectables 
2. Addressing modes handout

I. Introduction

A. Recall that, at the start of the course, we drew a distinction between 
computer ARCHITECTURE and computer ORGANIZATION.

1. An architecture is a functional specification of a computer system, 
generally defined in terms of how the system is seen by an assembly 
language programmer.  We frequently use the term Instruction Set 
Architecture (ISA) to refer to this.

2. An organization a particular way of implementing an architecture.

B. Thus far in this course, we have been studying in detail a particular 
architecture: that of MIPS.  You've also had some experience in lab with 
a very different architecture: the Z80.  Shortly, we will move to a study of 
basic principles of computer organization.   Before we do this, though, 
we will spend some time looking at the some of the issues that show up 
in other Von-Neumann style computer architectures.
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C. The following are some ISA's that are in current use.

1. In the 1960's, IBM introduced a family of mainframe computers (one 
architecture with multiple implementations) known as System/360.  
Descendants of this ISA are still being produced today as IBM's Z 
series mainframes for use by large organizations.   

a) A key emphasis in this family is backward compatibility - 
programs written for an earlier version of the ISA can, in most 
cases, run on later versions. 
 
In fact, many programs written for System/360 in the 1960's could 
be run on Z Series systems being produced today.

b) Similar computers have been produced by others, such as Univac, 
Fujitsu, and others.

2. In 1981, IBM released the first personal computer.   It used the 16-bit 
Intel 8086 chip, which was in turn derived from an earlier 8-bit Intel 
ISA, the 8080.   In 1985, this ISA evolved into a 32-bit ISA with the 
Intel 80386.  After further generations, this ISA came to be known as 
x86, and a 64 bit version commonly known as x86-64. 

a) This is, of course, the ISA used by Windows computers, and has 
been going back to the precursor MS-DOS system that ran on the 
original IBM PC.

b) Since 2005-2006, it has also been the ISA used on Macintoshes.

c) Linux laptops and PCs use chips that implement this ISA.

d) Chromebooks use chips that implement this ISA.

e) This ISA is also widely used in other systems from game systems 
to server systems.
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f) As was the case with System/360, many programs written for the 
earliest member of this family (8086) can still be run on current 
implementations of it.  

(1) In fact, backward compatibility has been a major driving force 
in the design of newer versions of this (and other) ISA's - 
ensuring that software written for an earlier member of the 
family can still run on later members.

(2) In the case of x86 and x86-64, the commitment to backward 
compatibility with a design based on the 8080 (created in 1974 
when what was technically possible was limited ) has resulted in 
an architecture that has a lot of ad-hoc characteristics.  According 
to Patterson and Hennessy (co-inventors of RISC), "this checkered 
ancestry has led to an architecture that is difficult to explain and 
impossible to love".  (Quoted p 347 of text.)

g) Although the 8086 was first developed by Intel, it has long been 
the case another company - AMD - also produces chips in this 
family.  This is a consequence of a "second source" requirement 
imposed by IBM when this chip was first chosen for the IBM PC.

3. The ISA used in most smart phones and tablets (except Windows ones) is 
known as ARM (Advanced RISC machine).  The ancestor of the ARM 
ISA was first developed in the 1980's, but it has evolved through multiple 
developments to 32 and 64 bit systems widely used today.

a) Apple has recently begun a 2 year process of transitioning 
Macintosh computers from using x86 ISA chips to a new chipset 
known as M1, which is based on the ARM ISA.

b) Like the other two architectures, new versions of the ARM ISA 
offer backward compatibility - especially important between 32 
and 64 bit versions.
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c) Arm ltd (which owns the patents) licenses other companies to 
produce implementations, while remaining the developer of new 
versions of the ISA. 

Did you notice that all three of these ISA's were first developed in the 
1980's or earlier?

D. We will also talk a bit about the Java Virtual Machine (JVM) - a virtual 
ISA whose "machine language" is compiled Java bytecodes that reside 
in .class files.

1. There have been some hardware implementations of this ISA, though 
none in common use.

2. More typically, this virtual machine is implemented by code running 
on an traditional platform, included as part of the JRE installation for 
a particular platform.

E. A number of other ISA's are in use in various embedded systems - 
automobiles, set-top TV boxes, internet routers, etc. 

II. RISC vs CISC

A. Every machine instruction includes an operation code (op-code) that 
specifies what operation is to be performed.  The set of all such possible 
operations constitutes the INSTRUCTION SET of a machine.

B. Early computers tended to have very limited instruction sets: data  
movement, basic integer arithmetic operations (+, -, sometimes * and /);  
integer comparison; bitwise logical and/or; conditional and unconditional 
branch, subroutine call/return, IO operations and the like - largely due to the 
challenge of creating control hardware.

C. In the late 1970's and 1980's machines moved in the direction of  including 
some very complex and high-power instructions in the  instruction set, with a 
view to decreasing what was known as the semantic gap between constructs in 
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programming languages and operations supported by the hardware.   The idea 
was to improve performance by needing fewer machine instructions to translate 
HLL constructs. 
 

The DEC VAX (no longer being manufactured) was the high water mark of this 
trend,  with single machine-language instructions for operations like:

1. Character string operations that copy, compare, or search an entire 
character string of arbitrary length using a single machine instruction. 

2. Direct support for higher-level language constructs like CASE, FOR,  etc.

3. Complicated arithmetic operations such as polynomial evaluation.

4. Queue manipulations to or remove an item from a queue.

D. In the 1980's, reduced Instruction Set (RISC) architectures arose from a 
questioning of the wisdom of this trend, leading to much simpler instruction 
sets.

1. The existence of complex instructions imposes a performance penalty on 
all the instructions in the instruction set - for reasons that will become 
more evident later as we consider control units.  In particular, RISC 
architecture designers looked carefully at what instructions were actually 
used  by compilers.  They found that, in some cases, instructions that 
were complex to implement (and may have penalized all instructions) 
were, in fact, rarely if ever used.

2. On the other hand, if the instruction set is kept simple, the door is opened 
to significant speed-up by the use of techniques like pipelining - i.e. 
executing portions of two or more instructions simultaneously.  In 
particular, having all instructions being the same size facilitates 
pipelining, by making it possible to determine where one instruction 
stops and another begins before actually decoding the first one.

E. In contrast, complex architectures came to be known as complex instruction 
set (CISC) architectures.   
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1. Both the IBM mainframe and x86 families are CISCs.

2. MIPS (that we have studied) and ARM are RISCs.

F. Since the 1980's, all new ISA development has used RISC architectures.

III.Hardware data types

A.  All ISA's provide for the manipulation of binary integers of some  specified 
number of bits (called the word length of the machine).

1. Word lengths for current ISAs vary from 8 bits to 64 bits.

2. Many CPU's actually provide for the manipulation of several sizes of  
binary integers - often 8, 16, 32 and perhaps 64 bits.

a) As we have noted, one of these sizes is typically designated as the  
natural WORD SIZE of the machine, and governs the width of 
internal  registers, data paths etc. (E.g. 32 bits for MIPS I, II).

b) CISCs typically have different instructions for arithmetic operations 
on different sizes of data (bytes, halfwords, etc.).  In RISCs, the 
arithmetic operations typically work on just one size, with different 
size load and stores operations for transferring data between memory 
and registers.

c) Frequently, another size is chosen as the basic ADDRESSABLE 
UNIT, and represents the smallest piece of  information that can be 
transferred to or from a unique address in  memory.

(1)On most modern machines, the addressable unit is the byte

(2)Many older machines were only word  addressable 

6



(3)Some machines have been built that allow addressing down to the 
individual bit.

(4)The drawing of a distinction between the addressable unit and the 
word size was an important technical innovation that first appeared  
in the IBM 360 series (early 1960's).  It allowed a single 
architecture to be used for both business applications (which 
typically work with byte-sized character data) and scientific ones 
(that typically need long words for arithmetic.)

3. One interesting issue that arises from the possibility of multiple types of 
integer is ENDIANNESS.

a) If the addressable unit is (say) a byte, and the size of an integer is 
(say) 4 bytes, then an integer occupies locations n memory associated 
with four successive addresses.

b) The universal convention is to treat the FIRST of these addresses as 
the actual address of the integer - e.g. the 4-byte integer in bytes 1000, 
1001, 1002, and 1003 is referred to by the address 1000.

c) But which bytes of the integer get stored in which location?

(1)One possibility is to store the MOST significant byte of the integer at 
the first address, the second most significant  byte at the second 
address .. the least significant byte at the last address.  This is referred 
to as BIG-ENDIAN - the "big end" of the number is stored first.

(2)  It is also possible to store the LEAST significant byte of  the integer at 
the first address, the second least significant byte at the second 
address .. the most significant byte at the last address.  This is referred 
to as LITTLE ENDIAN - the "little end" of the number is stored first.

(3)Example: Consider the (32 bit) hexadecimal integer AABBCCDD, 
stored at memory location 1000. 
 

PROJECT Alternative forms
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(a) On a big endian machine, we would have: 
 

1000 AA 
1001 BB 
1002 CC 
1003 DD

(b)On a little endian machine, we would have 
 

1000 DD 
1001 CC 
1002 BB 
1003 AA  

(4) ISA's differ in how they treat this issue. 

(a) Most older architectures are big-endian, including the IBM 
mainframe architecture.

(b)The x86 family architectures are little-endian.

(c) A number of architectures are bi-endian - either specified by a 
hardware bit or a software-settable bit.  

(5)  Where endian-ness makes a big difference is when moving data 
between machines (via a network connection or a file storage  
medium) that use different conventions. 

(a) Internet protocols call for information to be transmitted over the 
network in big-endian fashion, regardless of the native format of 
the processor sending/receiving the data.

(b)Many file formats (both open and proprietary) specify an 
endianness that they use which must be observed by any machine  
that reads or writes the the file - even if it must reverse  the order 
of bytes from its "native" convention. 
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Examples:   

 

Adobe Photoshop - big endian 
BMP - little endian 
GIF - little endian 
JPEG - big endian

(6)Note that some common data types (boolean, char) are - at the 
hardware level - simply treated as 8 or 16 bit integers.   Of course, 
endianness is not an issue for single byte values, but it is for two byte 
values.  (This means that endianness matters when dealing with 
unicode characters, though not with ASCII!)

4. Another issue is ALIGNMENT. 

a) Some architectures (including MIPS) require that  data units larger than 
a byte be stored at addresses that are a  multiple of the data unit size - 
e.g. MIPS requires that words (4 bytes) be stored at addresses that are a 
multiple of 4.

b) Other architectures - e.g.x86 - impose no such requirement.

c) However, accessing unaligned data in memory is slower, for reasons that 
will become more apparent when we study memory. 

d) Alignment requirements can impact how a structured data type is stored 
- and hence can also impact transmission and storage of data. 
 

Example: Consider the following class in C++ or Java: 
 
class C {  
    int a;  
    byte b;  
    int c;  
    ...  
} 

(1)Storing an object of this class therefore requires 9 bytes.  
 

If we had an array x consisting of 2 objects of this class  thatwere 
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stored beginning at addresses 1000, the natural way to store it would 
look like this 
 
x[0].a at 1000-1003  
x[0].b at 1004  
x[0].c at 1005-1008  
x[1].a at 1009-1012  
x[1].b at 1013  
x[1].c at 1014-1017

(2)This would not be permissible on an ISA that requires alignment, 
since most of the 4-byte ints would be at addresses that are not 
multiples of 4.  To fix this, it would be necessary to pad the structure 
with inaccessible filler bytes - but this would cause a problem if 
communicating with a machine that does not require alignment! 

B. In addition to one or more types of integer, many ISA's provide support for 
operation on real numbers - often IEEE 754 floats and doubles and sometimes 
others as well.  Of course, the same issues with regard to endianness and 
alignment arise with real numbers in byte-addressable ISA's.

C. Some ISA's provide for other data types, such as decimal numbers (encoded in 
BCD) or character strings. 
 
Example: MIPS supports only integers and floating point numbers.  Both x86 
and the Z80 have BCD arithmetic and hardware support to facilitate character 
string processing. 

D. The architect's choice of data types to be supported by the hardware has a 
profound impact on the rest of the architecture.

1. The tendency in the 1980's was to move toward ever-richer sets of  
hardware-supported data types.  (The DEC VAX was really the high water  
mark of this trend.
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2. RISC's tend to support only the basic integer types (8, 16, 32 and 64 bit) 
and floating point (possibly using a coprocessor) and all other data types 
managed by software

IV.Register sets

A. Early computers - like the VonNeumann machine - generally provided only a 
single register that could be directly manipulated by the assembly   language 
programmer - normally called the accumulator.

B. However, as hardware costs dropped it became obvious that having more 
than one such register would be advantageous.

1. Data that is stored in a register can be accessed much more quickly   than data 
stored in memory, so having multiple registers allows the subset of a program's 
data items that is currently being manipulated  to be accessible more quickly.

2. Modern ISA's typically have anywhere from a half dozen to 32 more or 
less general purpose registers (plus other special purpose ones.)

3.  In fact, some CPU's have been built with as many as 256 registers!

4. However, there are some microprocessors (e.g. the 6502 - still being used 
in embedded systems) that have  the one accumulator register structure 
inherited directly from he VonNeumann machine.

C. One question is how functionality should be apportioned among the  
programmer-visible registers.  Here, several approaches can be taken.

1. Multiple registers, each with a specialized function 

a) Example: Many micros - e.g. Z80: A register = accumulator; B..E = 
temporary storage; X,IY = index.

b) Example: The x86-64 is a 64 bit extension of the 32 bit x86, which in 
turn is an extension of the 16 bit 8086  architecture, which in turn is 
an extension of the 8 bit architecture of the Intel 8080.  The result is 

11



some specialization of the various registers.  
 

Actually,  the names of registers hark back to the register names on 
the 8080 - Intel's 8 bit chip (which was also an ancestor of the Z80) 
 

8080 registers: A, B, C ... 
8086 registers AX, BX, CX... plus more not on 8080 - also provide 
access to 8 bit subsets as A, B, C ... 
x86 registers EAX, EBX, ECX ... plus more not on 8086 - also 
provide access to 8 bit and 16 bit subsets as A, B,C ... or AX, BX, 
CX ... 
x86-64 registers RAX, RBX ... plus more not on x86 - also provide 
access to 8, 16, and 32 bit subsets as A, B. C ... or AX, BX, CX ... or 
EAX, EBX, ECX ... 

2. Multiple general-purpose registers - often designated R0, R1 .... 
 

Example: Many modern machines including MIPs.

a) In some cases - e.g. IBM mainframe ISA, the registers are totally 
interchangeable with no distinctions between them.

b) Often, some of the registers can be used as general but will have 
special ISA functions.

(1)Example - MIPS - R0 is the constant 0; R31 is used for return 
address from procedure calls. 

(2)Example - ARM  - R15 is the program counter, R14 is used for the 
return address from procedure calls, and R13 is the stack pointer.

3. At the opposite extreme, it is possible to design a machine with NO  
programmer visible registers per se, by using a stack  architecture in 
which all instructions operate on a stack maintained by the  hardware.  
 

Example: Java Virtual Machine
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D. In deciding on a register set architecture, there is an important tradeoff.  
When a machine has multiple registers, each instruction must  somehow 
designate which register(s) is/are to be used.  Thus, going from  one AC to 
(say) 8 registers adds 3-9 bits to each machine language  instruction - 
depending on how many register operands must be specified. 
 

Note, for example, that almost half the bits in a MIPS R-Format instruction 
are used to specify registers.  (This is a major reason why the IBM 
mainframe and 32-bit ARM architectures have only 16 general registers.)

V. Instruction Formats

A. Different ISA's differ quite significantly in the  format of instructions.  
Broadly speaking, they can be classified into  perhaps four categories, by 
looking at the format of a typical  computational instruction (e.g. ADD).  To 
compare these ISA's,  we will look at how they implement two HLL 
statements, assuming all operands are variables in memory: 
 
Z = X + Y  
Z = (X + Y) / (Q - Z) 
 

(PROJECT each format in turn)

B. Memory-memory architectures: all operands of a computational instruction  
are contained in memory.

1. Three address architecture:  op destination source1 source2 
 
Z = X + Y 
 
ADD     Z, X, Y 
 
Z = (X + Y) / (Q - Z) 
 
ADD     T1, X, Y  
SUB     T2, Q, Z  
DIV     Z, T1, T2 

 

Example: The above would have been valid VAX programs if we used 
the VAX mnemonics ADDL3, SUBL3, and DIVL3 - except that the 
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VAX orders operands source1, source2, destination!  However,  no 
current ISA supports having three memory operands in one instruction.

2. Two address architecture: op destination source 
(destination serves as both the second source and the destination) 
 
Z = X + Y 
 
MOV     Z, X  
ADD     Z, Y 
 
Z = (X + Y) / (Q - Z) 
 
MOV     T1, Q  
SUB     T1, Z  
MOV     Z, X  
ADD     Z, Y  
DIV     Z, T1 
 

Example: The above would have been valid PDP-11 programs and also 
VAX programs if we used the mnemonics MOVL, ADDL2, SUBL2, and 
DIVL2 - except that the VAX orders operands source, destination!

3. Since the VAX, memory-memory architectures have gone out of style. (I 
know of no machines with such an architecture being manufactured 
today)  Note that the VAX was unusual in having both formats

4. Multiple register machines generally allow registers to be used in place 
of memory locations, as was the case on the VAX.

C. Memory-register architectures: one operand of an instruction is   in memory; 
the other must be in a register.  Note: These are often  called "one address" 
architectures.

1. Multiple register machine: op source register (or op register source) 
 

(The designated register serves as both one source and the destination; on 
some machines (e.g. Intel 80x86), the memory location may also serve as 
the destination.) 
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(Multiple register machines generally allow a register to be used instead 
of the memory operand, as well) 
 
Z = X + Y  
 
LOAD    R1, X  
ADD     R1, Y  
STORE   Z, R1  
 
Z = (X + Y) / (Q - Z)  
 
LOAD    R1, X  
ADD     R1, Y  
LOAD    R2, Q  
SUB     R2, Z  
DIV     R1, R2  
STORE   Z, R1  
 
Example: An x86 version of the second program would be 
 
MOV     EAX, X  
ADD     EAX, Y  
MOV     EBX, Q  
SUB     EBX, Z  
DIV     EAX, EBX  
MOV     Z, EAX  
 
Example: This is also the format used on the IBM mainframe (360/370) 
architecture

2. Single accumulator machine:    op source  
(AC serves as both a source and destination) 
 
Z = X + Y  
 
LOAD    X  
ADD     Y  
STORE   Z  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Z = (X + Y) / (Q - Z)  
 
LOAD    Q  
SUB     Z  
STORE   T1  
LOAD    X  
ADD     Y  
DIV     T1  
STORE   Z  
 
Example: A very common pattern, including the original Von Neumann 
machine, many 8-bit microprocessors (including the Z80 - where the A 
register is implicitly the accumulator).

D. Load-store architecture: All operands of a computational instruction must be 
in registers.  Separate load and store instructions are provided for moving a 
value from memory to a register (load) or from a register to memory (store). 
 
Z = X + Y  
 
LOAD    R1, X  
LOAD    R2, Y  
ADD     R1, R2, R1  
STORE   Z, R1  
 
Z = (X + Y) / (Q - Z)  
 
LOAD    R1, X  
LOAD    R2, Y  
ADD     R1, R2, R1  
LOAD    R2, Q  
LOAD    R3, Z  
SUB     R2, R2, R3  
DIV     R1, R1, R2  
STORE   Z, R1  
 
Example: RISCs, including MIPS (though MIPS assembly language lists the 
destination operand of store second)
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E. Stack architecture: All operands of a computational instruction 
are popped from the runtime stack, and the result is pushed back on the 
stack.  Separate push and pop instructions are provided for moving  value 
from memory to the stack (push), or from the stack to a register (pop). 
 
Z = X + Y  
 
PUSH    X  
PUSH    Y  
ADD  
POP     Z  
 
Z = (X + Y) / (Q - Z)  
 
PUSH    X  
PUSH    Y  
ADD  
PUSH    Q  
PUSH    Z  
SUB  
DIV  
POP     Z  
 
(Note: the order of pushes is important when using non-commutative 
operations like subtract or divide.  The second item pushed is subtracted 
from or divided into the first - so the order of pushes corresponds to the 
order of the original algebraic expression.) 
 
Example: Java Virtual Machine

F. There are trends in terms of program length in the above examples.

1. The example programs for the 3 address machine used the fewest 
instructions, and those for the load-store and stack machines used the 
most, with the other architectures in between.  (This is a general pattern.)
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2. However, the program that is shortest in terms of number of instructions 
may not be shortest in terms of total number of BITS - because encoding 
an address in an instruction requires a significant number of bits.

3. You will investigate this further on a homework set.

VI.Provisions for Altering Program Flow Based on Comparison of Values

A. All ISA's must provide some mechanism for altering the program flow based 
on comparing two values, but there are a variety of different ways to 
accomplish this.

1. First, it is worth noting that only one comparison is really necessary - e.g. 
less than.  As we have already seen, if we have A < B, we can test other 
conditions as well (e.g. A <= B is ! (B <  A); A > B is  B < A; A >= B is ! 
(A < B); A != B is (A < B | B < A); A == B is ! (A < B | B > A)). 

2. Moreover, it is only necessary to support either comparing two values,  or 
comparing one value to 0 - e.g. A < B can be tested by seeing if  (A - B) < 0.

B. Some ISA's support conditional branches that are based on the value in a 
register or some comparison between registers.

1.  MIPS beq, bne.

2. Some one-accumulator architectures incorporate conditional branches (or 
skips) based on the value in the accumulator (eg, zero, negative).

C. Many ISA's however, make use of something called CONDITION CODES 
or  FLAGS. A condition code is a bit that is set or cleared following an 
arithmetic or logical operation based on the result of that operation.  (The 
flag retains its value until the next arithmetic or logical operation is done.)

1. Example: The Z80 supports condition codes S, Z, C, and V, which reside 
in the F register.
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a) S is set to the sign of an arithmetic or logical operation - and hence is 
1 if the result is negative, and 0 if it is not.

b) Z is set by an operation if the result is zero, and cleared if it is non-
zero.

c) C is set by an operation if it produced carry/borrow (unsigned 
overflow), and cleared if it did not.

d) V is set by an operation if it produced two's complement overflow, 
and cleared it it did not.

2. Such architectures often include a "compare" instruction that (in effect) 
subtracts two values and sets the flags, but does not  actually save the 
result but rather only sets/clears the condition codes.

3. In such architectures, conditional branch instructions are provided  for testing 
various individual flags or combinations.  These instructions merely test the 
flags - they never alter them.  As a  result, their outcome is based on the MOST 
RECENT arithmetic/logic operation to have been performed 
 

Example: Z80 encoding for  
 
if (FOO < BAR)  

Something; 
 

LD     A,FOO  
LD     B,BAR  
CP     A,B  
JP     P, FINI // P means "positive"-i.e. S flag clear  
Code for Something  

FINI:

4. Of course, in such architectures, it is also possible to base a conditional branch 
on the result of a computation that needed to be done anyway. 
 

Example: Z80 encoding for 
 
do  
 {  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 ...  
k --;  

} while (k != 0) 
 
 LOOP:  

...  
LD A, K  
DEC A  
JP NZ, LOOP // NZ means not zero-i.e. Z flag clear

D. MIPS does not use condition codes - in part due to overlap of successive 
instructions due to pipelining, but also because condition codes make restoring the 
system state after an interrupt more complicated.  (They must be saved like 
registers to prevent incorrect results if an interrupt occurs between an arithmetic/
logic operation and a conditional branch  that tests its outcome, which is difficult 
on a highly pipelined machine where several instructions can be in various stages 
of execution when an interrupt occurs.)

E. Many other ISA's do, including IBM mainframe, x86, and ARM.

VII.Addressing Modes

A. All ISA's must provide some instructions that access data in memory - either 
as part of a computational instruction, or via separate load/store or push/pop 
instructions.  A final architectural issue is how is the address of a memory 
operand to be specified?  

B. The various choices are referred to as ADDRESSING MODES.

1. The VonNeumann machine only provided for direct addressing -   the 
instruction contained the address of the operand.

2. If this is the only way of specifying a memory address, though, then it 
turns out to be necessary to use SELF-MODIFYING CODE.

a) Example: Consider the following fragment from a C++ program: 
 
class Foo  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{  
    int x;  
    ...  
};  
Foo * p;  
...  
sum = sum + p -> x;  
 
Assuming that x is at the very beginning of a Foo object, 
this has to be translated by something like 
 
load p into the AC  
add the op-code for add into the AC  
store the AC into the point indicated in the program  
load sum into the AC  
-- this instruction will be created as program is running  
store the AC into sum 

b) Another example: 
 
int x[100];  
int i;  
...  
cin >> i;  
sum += x[i];  

(1) If we assume a byte-addressable machine with 4 byte integers, 
with x starting at memory address 1000, then successive elements 
of x occupy addresses 1000, 1004, 1008 .. 1399 (decimal).  The ith 
element of x is at address (1000 + 4*i).

(2)On a one accumulator machine, the operation of adding x[i] to sum 
translates to 
 
load sum into the AC  
add x[i] to the AC  
store the AC in sum  
 
The problem is - what address to we put into the add instruction 
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when assembling the program, since the value of i is not known 
until the program runs (and may even vary if the code in question 
is contained in a loop that is done multiple times)? 

(3)On a computer that only supports direct addressing, we have to code 
something like: 
 
load i into the AC  
multiply the AC by 4 (shift left two places)  
add base address of x (1000) into the AC  
add the op-code for add into the AC  
store the AC into the point indicate in the program  
add sum into the AC  
-- this instruction will be created as program is running  
store the AC into sum

3. Historically, various addressing modes were first developed to deal 
with problems like this, then to deal with other sorts of issues that 
arise in the program-translation process.

C. The following are commonly-found addressing modes 
 
HANDOUT

1.  Absolute: The instruction contains the ABSOLUTE ADDRESS of the 
operand 
 

This is the original addressing mode used on the VonNeumann machine, 
but still exists on many machines today - at least for some instructions. 
 

Example (MIPS) j, jal - but not supported for other memory reference 
instructions

2. The first approach to addressing issues like this was the introduction of 
memory indirect (deferred) addressing:  the instruction contains the address 
of  a MEMORY LOCATION, which in turn contains the ADDRESS OF THE 
OPERAND. 
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However, A major disadvantage of supporting this mode is that an extra trip 
to memory is required to calculate the address of the operand, before actually 
going to memory to access it.  Thus, while some older CISC architectures 
supported it, ISA's (both RISC and CISC - including x86) do not.

3. Register indirect (register deferred): The ADDRESS of the operand is  
contained in a REGISTER.  (Of course, this is only an option on 
machines with multiple programmer-visible registers - either general or 
special purpose) 
 

Example (MIPS) lw, sw with offset of 0. 
 

The examples we considered earlier could be coded this way: 
(where we will denote the register we chose to use for data as 
 the D and the one we chose to use for A)

a) sum += p -> x;  
 
load sum into the D  
load p into A  
add A indirect to D  
store the D into sum

b) sum += x[i];  
 
load i into A  
multiply A by 4 (shift left two places)  
add the base address of x (e.g. 1000) into A  
load sum into D  
add A indirect to D  
store the D into sum

4. Autoincrement/autodecrement: some architectures support a variant of the 
register indirect mode in which the register is either incremented after 
being used as a pointer, or decremented before being used as a pointer, by 
the size of the operand. 

a) A typical assembler mnemonic is (Rx)+ or -(Rx)
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b) This simplifies certain operations, but does not provide any 
new capability - e.g. the instruction 
 
something (Rn)+ 
 

is equivalent to 
 
something register indirect Rn  
increment Rn by an appropriate amount

c) This provides single-instruction support for stack pushes/pops 
(examples assume stack grows from high memory to low; sp register  
points to top of stack) 
 

e.g.        push x         move -(sp), x  
       pop x          move x, (sp)+ 

d) This provides single instruction support for accessing array elements 
in sequence. 
 
e.g. sum elements of an array (do the following in a loop) 
 
add (pointer register) +, sum

e) This has found its way into C in the form of the ++ and -- operators 
applied to pointers (assuming the pointer is kept in a register) - largely 
because this addressing mode was present on the PDP-11 ISA  on 
which C was first implemented, and the language included a facility to 
take advantage of it for efficiency's sake.

f) RISCs and most CISC's (including x86) do not provide this mode; 
instead, one must use a two instruction sequence

5. Register + displacement: The address of the operand is calculated by 
adding a displacement to a register 
 
Two uses
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a) Access a component of an object that is not at the start 
 
Suppose the pointer example we have used were the following: 
 
class Foo  
{  
    int x, y, z;  
    ...  
};  
Foo * p;  
...  
sum = sum + p -> z;  
 
Now p points to the memory cell holding "x", but the cell holding "z" is 2 
words (8 bytes) away. 
 
This could be done by 
 
load sum into the D  
load p A  
add value at A displaced by 8 to D  
store D into sum

b) Access an array element specified by a variable index 
 
load i into A  
multiply A by 4 (shift left two places)  
load sum into D  
add value at A displaced by base address of x to D  
store D into sum

c) Example: (MIPS) lw, sw

(1)Note that this is the basic addressing mode for MIPS load/store; 
register indirect is achieved by using this mode with a 
displacement of 0.
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(2)Note that our second example is often not feasible on MIPS 
because the displacement is limited to 16 bits, so this must be done 
some other way (e.g. calculating the entire address - base + 4 * 
value of i and then using register-indirect.)

d) This mode is commonly available on CISCs as well as RISCs  
(including x86)

6. Indexed: Some architectures support an addressing mode  in which a 
multiple of some register is added to some base address,  where the 
multiple of the register is the size of the operand - e.g. 
 
Assume we have an array of ints on a byte-addressable machine, where 
each int occupies 4 bytes, as in our previous examples.  Recall that, in 
this case, to access x[i], we needed code to calculate i * 4 in some 
address register. 
 
If indexed mode were available, we could put the value of i in a register 
and use indexed mode addressing, where the register is scaled by the size  
of an element of x[] (4). 
 
Example: a variant of this mode is available on the IBM mainframe and 
x86 ISA's

7. PC Relative: 

a) Many large programs are made up of multiple modules that are 
compiled separately, and may also make use of various libraries that 
are furnished as part of the operating system.  When an  executable 
program is linked, the various modules comprising it are generally 
loaded into successive regions of memory, each beginning where the 
previous one ends.  This implies that, in general, when the compiler is 
translating a module, it  does not know where in memory that module 
will ultimately be loaded.
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b) Now consider the problem of translating the following: 
 
if (x >= 0)  

y = x;  
 
translates into:  
 

load x into some register  
compare this register to zero  
if it was less than zero, branch to L1  

 store register into y 
L1:  
 
What address should be placed into the branch instruction i.e. 
what is the address associated with the label L1?  This is entirely dependent 
on whether this module is placed in memory by the loader, which the 
compiler cannot know.

(1)  One possibility is to require the loader to "fix up" addresses whose 
value depends on where the module is loaded (so called relocatable 
addresses)

(2)Another approach is to generate position independent code, which works 
correctly regardless of where in memory this goes.

c) In the above example, though the absolute address associated with L1 is 
unknown, its relative distance from the branch instruction is known and is 
always the same regardless of where the module is loaded. 
 
In  PC relative mode, the instruction would contain the distance 
between the instruction AFTER the branch instruction and the 
target, here the length of the store instruction (e.g. 4 on MIPS).  At run-
time, the CPU adds this to the PC to get the actual target address.

d) Another advantage of PC relative mode is that relative offsets are usually 
smaller (in bits) than absolute addresses.
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e) Example (MIPS) bne, beq - not supported for other memory reference 
instructions.  A 16 bit offset can be used for these, because the target of a 
branch instruction is generally close to the instruction itself. 

D. The following are also considered addressing modes on some machines, though 
they don't actually address memory.   (Depending on how an instruction specifies 
an addressing mode.)

1. Register: The operand VALUE is contained in a REGISTER (not memory) 
 
Example (MIPS) "R Format" computational instructions

2. Immediate: The instruction itself CONTAINS the VALUE of the operand 
 
Example (MIPS) addi, andi, ori, xori etc.

E. ISAs vary in their support for various addressing modes

1. Some ISAs use a very flexible and general set of addressing modes - the VAX 
and the Motrola 68000 series being two historical examples. 
 
(On the VAX and 68000, any one of the modes listed above can be used 
with virtually any instruction; for each operand an instruction uses, there is a 
mode field of 3-4 bits that specifies what addressing mode should be used.)

2. Some ISAs offer a flexible set of modes, but limit certain modes to 
use with certain registers.  The x86 and x86-64 are examples of this. 

3. Other ISAs offer a more restricted set of modes, or specify that specific 
instructions use specific modes.  The latter is the case on MIPS: computational 
instructions can only use register or immediate mode; jump instructions can 
only use absolute mode;  branch instructions can only use relative mode; and 
load/store instructions can only use displacement mode, which can give the 
effect of register indirect by using a displacement of zero, or (for small 
addresses) of absolute mode by using $0.
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